**EXPERIENCE** & **INSIGHTS FROM RECENT PUBLIC FACILITIES IN GERMANY, POLAND AND OTHER** EUROPEAN **COUNTRIES** 



**VOLKER GROTEFELD** 



### Content

- **1.** Waste management hierarchy
- **2.** Possible waste management strategies
- **3.** Criteria for site selection
- 4. Private or Public owned pro & cons
- **5.** Overview of WtE-technology
- 6. Examples of private and public owned plants

# **Waste Management Hierarchy**

- Israel is installing Sorting plants to enable recycling and recovering.
- The next step is the installation of WtE-plant for thermal treatment.



## **Possible Waste Management Strategies**

- No separation
  - $\rightarrow$  everything goes to WtE-Plant
- Separation at source (e.g. glass, plastic)

 $\rightarrow$  only non-usable material goes to WtE-plant

- Separation in sorting plant ("Israeli way")
  - $\rightarrow$  only non-usable materials goes to WtE-plant

Each European country and sometimes

each city has its unique strategy.







# **Criteria for site selection**

- Transportation
  - → often the site of existing plants or landfills are a good choice (existing infrastructure)
- Possible energy usage (WtE-plants)
  - → long-term cooperation with industry or public facilities
- Zoning
- If larger catchment area, possible neighbourhood of train system (waste transfer station)





## Private or Public owned – pro & cons

In the last 10 years there were 2 emerging WtE-markets in Europe

United Kingdom

mainly private owned plants

• Poland

mainly public (cities or public waste management association) owned plants

Sorting plants in Europe are often privately owned. The recycling rate of plastics in these plants correlates with the "oil price" and not with environmental possibilities.



## **Private or Public owned – pro & cons**

### Pro private owned

- Lean government (companies take care of building and operating of plant)
- Investment by company
- Easier contracts with EPC-Supplier



### Con private owned

- Private company will choose the "cheapest" technology (e.g. 1 line with no waste combustion for 700 h/a)
- Cooperation will try to increase profit; therefore, tipping fee might increase over time

# **Private or Public owned – pro & cons**

### **Pro public owned**

- Local authority can choose what is best for the community
- Stable waste disposal costs
- Independence
- Innovative concepts / political solutions can be persuaded





### Con public owned

Political solutions might increase CAPEX/ OPEX

# How to deal with opposition

- Always honest and competent dialogue
  - $\rightarrow$  open discussion with concerned neighbours. There is a <u>chance</u> that they can be convinced.
- Integration of environmental pressure groups should be avoided
  - → experience show that their aim is and stays to prevent plants. When cities integrate groups and their representatives to formulate limits, plants were not executed because of unrealistic values.
  - $\rightarrow$  Talks with representatives should always be with witnesses.

### **Overview of WtE-technology**



| Waste delivery | Combustion | Flue gas  | Energy   | Residue      |
|----------------|------------|-----------|----------|--------------|
| and storage    | and boiler | treatment | recovery | handling and |
|                |            | (FGC)     |          | treatment    |

# **Overview of WtE-technology**

- Safe disposal of non-usable waste
- Mass reduction (down to 20 25 % of untreated waste)
- Volume reduction (down to 10 % of untreated waste)
- Energy utilisation of waste:
  Electricity production
  Steam export to industry
  Heat export to district heating
  or Cooling systems
- Reduction of CO<sub>2</sub>-emissions





# **WtE-plants in Europe**





# WtE-plants in Europe (Examples)

#### Germany



### Switzerland (29 plants)



### Poland



# **RDF-WtE Plant Bernburg**

#### Owner

PreZero Strong interaction with city council

#### **Specialities**

Plant supplies the industrial park of Solvay with steam

Plant is located in the middle of the city.

**Technical data:** Incineration capacity 552,000 Mg/a steam capacity 240 t/h, 40 MW<sub>el</sub>



# **WtE-plant Bialystok**

#### Owner

City of Bialystok

#### **Specialties**

Plant supplies industry with steam and the district heating grid

Technical data:

120,000 Mg/a Waste 8 MW<sub>el</sub>







# WtE-plant for the City of Szczecin (Poland)



**Owner** City of Szczecin

#### **Specialities**

Plant located in the harbour and designed like a fish. The plant is the only plant with a wet flue gas cleaning. The plant supplies the district heating grid (incl. large heat pump) & produces electricity.

Technical data 160,000 Mg/a Waste, 14 MW<sub>el</sub>



### WtE-plant in Konin (Poland)





**Owner** Waste Association

#### **Specialties**

Located next to existing landfill. Supply of district heating grid.

Technical data: 90,000 Mg/a Waste, 7 MW<sub>el</sub>



### WtE-plant Rzeszow (Poland) for PGE



#### Owner

PGE (electrical company)

#### **Specialities**

Supply of district heating grid. "Fancy" design. Second line is being.

Technical data: 100,000 Mg/a Waste 8 MW<sub>el</sub>



### WtE-plant Warsaw (Poland)

**Client** City of Warsaw

#### **Speciality**

"Green" design Addition of small existing plant Supply of district heating grid (and electricity production) Largest plant in Poland

Technical data: 2 x 17 Mg/h

Operation:

starting 2024





# WtE-plant Solingen (Germany)

#### Client

Technische Betriebe Solingen (City)

#### **Specialities**

Supply of district heating Plant is now located in the middle of the city with a Kindergarten and a school right next to it. Citizens can bring their bulky waste directly to the bunker. Innovative concepts as decided by the city council.













Operation:

since 1969



# WtE-plant Leverkusen (Germany)

#### Owner

AVEA Leverkusen (waste association)

#### **Specialties** Supply of district heating Located in the middle of the city



Technical data:280,000 Mg/a WasteOperation:since 1969





### WtE-plant Düsseldorf-Flingern (Germany)

**Owner** Stadtwerke Düsseldorf AG

**Specialties** Steam supply to power plant

When City Utility company was sold to external company, all large re-investments were stopped.





Technical data: 420.000 Mg/a waste



# **RDF-plant Chalampé (France)**

#### Owner

Umweltdienste Bohn (German company)

#### **Specialities**

Plant supplies chemical park of Alsachimie with steam. Plant is integrated in regional waste management.

Technical data:ca. 26 t/h Waste through-put<br/>ca. 100 t/h life steam<br/>ca. 175.000 Nm³/h flue gas









### Thank you very much for your attention!

